

SEMIPACK ${ }^{\circledR} 3^{1)}$
Rectifier Diode Modules

SKKD 260

Features

- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts
- UL recognized, file no. E 63532

Typical Applications

- Non-controllable rectifiers for AC/AC converters
- Line rectifiers for transistorized AC motor controllers
- Field supply for DC motors

1) Discontinued version, redesigned version already available
2) See the assembly instruction
3) The screws must be lubricated

$V_{\text {RSM }}$	$V_{\text {RRM }}$	$\mathrm{I}_{\text {FRMS }}=410 \mathrm{~A}$ (maximum value for continuous operation)	
V	V	$\mathrm{I}_{\text {FAV }}=260 \mathrm{~A}$ (sin. 180; $\left.\mathrm{T}_{\mathrm{c}}=85^{\circ} \mathrm{C}\right)$	
900	800	SKKD 260/08	
1300	1200	SKKD 260/12	
1500	1400	SKKD 260/14	
1700	1600	SKKD 260/16	
2100	2000	SKKD 260/20H4	
2300	2200	SKKD 260/22H4	

Symbol	Conditions	Values	Units
$\left\lvert\, \begin{aligned} & I_{\text {FAV }} \\ & I_{\mathrm{D}} \end{aligned}\right.$	sin. 180; $\mathrm{T}_{\mathrm{c}}=85(100){ }^{\circ} \mathrm{C}$	260 (185)	A
	P3/180F; $\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$; B2 / B6	280 / 320	A
	P3/180F; $\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$; B2 / B6	490 / 655	A
$\mathrm{I}_{\text {FSM }}$	$\mathrm{T}_{\mathrm{Vj}}=25^{\circ} \mathrm{C} ; 10 \mathrm{~ms}$	11000	A
	$\mathrm{T}_{\mathrm{vj}}=130^{\circ} \mathrm{C} ; 10 \mathrm{~ms}$	10000	A
i ${ }^{2}$ t	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms}$	605000	$A^{2} \mathrm{~s}$
	$\mathrm{T}_{\mathrm{vj}}=130^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms}$	500000	$A^{2} \mathrm{~s}$
V_{F}	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{F}}=750 \mathrm{~A}$	max. 1,25	V
$\mathrm{V}_{\text {(TO) }}$	$\mathrm{T}_{\mathrm{vj}}=130^{\circ} \mathrm{C}$	max. 0,9	V
$\mathrm{r}_{\text {T }}$	$\mathrm{T}_{\mathrm{vj}}=130^{\circ} \mathrm{C}$	max. 0,37	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {RD }}$	$\mathrm{T}_{\mathrm{vj}}=130^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{RD}}=\mathrm{V}_{\text {RRM }}$	max. 15	mA
$\mathrm{R}_{\mathrm{th}(\mathrm{j} \text { (})}$	cont.; per diode / per module	0,14 / 0,07	K/W
	sin. 180; per diode / per module	0,15 / 0,075	K/W
$\mathrm{R}_{\mathrm{th}(\mathrm{c}-\mathrm{s})}$	per diode / per module	0,04 / 0,02	K/W
T_{vj}		-40 ... + 130	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-40 ... + 130	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {isol }}$	a. c. 50 Hz ; r.m.s.; $1 \mathrm{~s} / 1 \mathrm{~min}$.	3600 / 3000	V
$\mathrm{V}_{\text {isol }}$	a. c. 50 Hz ; r.m.s.; $1 \mathrm{~s} / 1 \mathrm{~min}$. for SKK ...H4	4800 / 4000	V
$\mathrm{M}_{\text {s }}$	to heatsink	$5 \pm 15 \%{ }^{2}$	Nm
M_{t}	to terminals	$9 \pm 15 \%^{3)}$	Nm
a		5 * 9,81	$\mathrm{m} / \mathrm{s}^{2}$
m	approx.	750	g
Case		A 78a	

Fig. 12L Power dissipation of two modules vs. direct current

Fig. 13L Power dissipation of three modules vs. direct current

Fig. 11R Power dissipation per diode vs. ambient temperature

Fig. 12R Power dissipation of two modules vs. case temperature

Fig. 13R Power dissipation of three modules vs. case temperature

Case A 78 a

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

